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America has officially entered the “coal cost 

crossover” – where existing coal is increasingly 

more expensive than cleaner alternatives.  Today, 

local wind and solar could replace approximately 

74 percent of the U.S. coal fleet at an immediate 

savings to customers. By 2025, this number grows 

to 86 percent of the coal fleet.   

This analysis complements existing research 2 into 

the costs of clean energy undercutting coal costs, 

by focusing on which coal plants could be replaced 

locally (within 35 miles of the existing coal plant) 

at a saving.  

It suggests local decision-makers should consider 

plans for a smooth shut-down of these old plants—

assessing their options for reliable replacement of 

that electricity3, as well as financial options for 

                                                      
1 The authors would like to thank Joe Daniel, Harriet Moyer Aptekar, Jeremy Fisher, Uday Varadarajan, Ric 
O’Connell, Taylor McNair, and Sonia Aggarwal for their helpful feedback on this report. Any remaining errors are the 
responsibility of the authors. 
2 Carbon Tracker Institute, No Country for Coal Gen – Below 2° C and Regulatory Risk for US Coal Power Owners, 
September 2017, https://www.carbontracker.org/reports/no-country-for-coal-gen-below-2c-and-regulatory-risk-
for-us-coal-power-owners/; Pacificorp, 2019 Integrated Resource Plan (IRP) Public Input Meeting, December 2018, 
https://www.eenews.net/assets/2018/12/05/document_cw_01.pdf. 
3 Joshua Novacheck, Greg Brinkman, and Gian Porro, Operational Analysis of the Eastern Interconnection at Very 
High Renewable Penetrations, National Renewable Energy Laboratory, September 2018, 
https://www.nrel.gov/docs/fy18osti/71465.pdf; Mark Dyson and Alex Engel, A Low-Cost Energy Future for Western 
Cooperatives, Rocky Mountain Institute, 2018, https://www.rmi.org/wp-
content/uploads/2018/08/RMI_Low_Cost_Energy_Future_for_Western_Cooperatives_2018.pdf. 
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communities dependent on those plants4.   

Ultimately, this report begins a longer conversation about the most cost -effective 

replacement for coal, which may include combinations of local or  remote wind, 

solar, transmission, storage, and demand response.   

INTRODUCTION & RESULTS 

Coal generation is at a crossroads in the United States, or more precisely at a “cost crossover.” 

Due to the rapid recent cost decline of wind and solar,5 the combined fuel, maintenance, and 

other going-forward costs of coal-fired power from many existing coal plants is now more 

expensive than the all-in costs of new wind or solar projects.  This cost crossover raises 

substantial questions for regulators and utilities as to why these 

coal plants should keep running instead of new renewable power 

plants. 

To determine which coal plants are facing this cost crossover with 

renewables, Energy Innovation partnered with Vibrant Clean 

Energy (VCE) to compile a dataset of coal, wind, and solar costs.6  

For simplicity, the modeling compares each coal plant’s marginal 

cost of energy (MCOE) to the lowest levelized cost of energy 

(LCOE) for wind or solar resource localized around that coal plant.  

Restricting replacement to local resources makes this analysis 

conservative, considering most coal, wind, and solar all travel from 

more remote locations to load centers via transmission. 

Our research finds that in 2018, 211 gigawatts (GW) of existing 

(end of 2017) U.S. coal capacity, or 74 percent of the national 

fleet, was at risk from local wind or solar that could provide the 

same amount of electricity more cheaply. By 2025, at-risk coal 

increases to 246 GW – nearly the entire U.S. fleet.7  

                                                      
4 Sonia Aggarwal, “Billions At Stake: Should We Invest In Struggling Power Plants Or Communities Facing Closures?” 
Forbes, August 23, 2018, https://www.forbes.com/sites/energyinnovation/2018/08/23/billions-at-stake-should-we-
invest-in-struggling-power-plants-or-communities-facing-closures/#b62238a1f687.   
5 Megan Mahajan, “Plunging Prices Mean Building New Renewable Energy Is Cheaper Than Running Existing Coal,” 
Forbes, December 3, 2018, https://www.forbes.com/sites/energyinnovation/2018/12/03/plunging-prices-mean-
building-new-renewable-energy-is-cheaper-than-running-existing-coal/.  
6 VCE’s WIS:dom model uses granular wind speed and solar irradiance data for nine-square-kilometer (3-km x 3-km) 
cells across the entire U.S. to paint an accurate picture of LCOE, making this a uniquely granular analysis.   
7 The VCE compiled dataset computes approximately 286 GW of coal-fired power plants as of January 1st, 2018. 
Since that date, rapid retirements and re-firing with natural gas has occurred, in part, due to the cost pressure that 
we identify in this study. 

Definitions in this analysis: 

“Local” means within 35 miles. 

“At risk” coal means local wind or 

solar could replace the coal plant’s 

total output (on a kilowatt-hour 

basis) at an all-in cost lower than 

the existing coal plant’s ongoing 

marginal costs. 

“Substantially at risk” coal means 

local wind or solar could replace 

the coal plant’s total output at an 

all-in cost >25% lower than the 

existing coal plant’s ongoing 

marginal costs. 

https://www.forbes.com/sites/energyinnovation/2018/08/23/billions-at-stake-should-we-invest-in-struggling-power-plants-or-communities-facing-closures/#b62238a1f687
https://www.forbes.com/sites/energyinnovation/2018/08/23/billions-at-stake-should-we-invest-in-struggling-power-plants-or-communities-facing-closures/#b62238a1f687
https://www.forbes.com/sites/energyinnovation/2018/12/03/plunging-prices-mean-building-new-renewable-energy-is-cheaper-than-running-existing-coal/
https://www.forbes.com/sites/energyinnovation/2018/12/03/plunging-prices-mean-building-new-renewable-energy-is-cheaper-than-running-existing-coal/


  
  

3 

Furthermore in 2018, 94 GW of existing U.S. coal capacity was deemed substantially at risk from 

new local wind and solar that could undercut ongoing costs of existing coal by at least 25 

percent. By 2025, substantially at risk coal increases to 140 GW – almost half the U.S. fleet – 

even as federal renewable energy tax credits phase out.  Given uncertainties in publicly available 

coal cost data, the tier of coal plants “substantially at risk” could, with high confidence, be 
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replaced with renewable energy at an immediate cost savings. State-by-state data as well as a 

national-level dataset detailing these findings are available as a companion to this report. 

The VCE dataset reveals the going-forward costs for the vast majority of coal plants fall between 

$33 – 111 / megawatt-hours (MWh).  Costs in 2018 for solar are more tightly clustered, between 

$28 – 52 / MWh, while wind costs vary more widely based on locational resource quality, falling 

between $13 – 88 / MWh, with a high number of very costly outliers in windless regions.   

The crossover between new renewable and coal running costs is just one important part of 

shutting down existing coal plants – replacing coal plants with new wind and solar energy is 

much more complex in practice.  The purpose of this report is to act as a conversation primer for 

stakeholders and policymakers where the math points to cheaper options that could replace coal 

plants at a savings to customers.  Any decision on how to proceed will require further modeling 

of grid impacts and alternative sources of reliability services, as well as the possibility for even 

cheaper renewable replacements further away than the 35-mile maximum radius considered in 

this report.8 

Regardless, any coal plant failing the cost crossover test should be a wake-up call for 

policymakers and local stakeholders that an opportunity for productive change exists in the 

immediate vicinity of that plant.   

Building local renewables in the immediate vicinity of coal plants implies wind and solar could 

replace local jobs, expand the tax base, reuse existing transmission, and locate in the same utility 

service territory.  But these constraints are quite restrictive.  Utility planners, regulators, and 

customers could save additional money by looking further afield. For example, Colorado plans to 

replace its coal fleet with strategically located wind and solar resources around the state.9  The 

VCE WIS:dom model and others can accurately analyze the viability of transitioning from 

dispatchable power sources like coal to variable resources like wind and solar.  

The unpaid capital balance owed to investors in coal plants falls outside a coal plant’s MCOE.  

Though this balance should not factor into the economic viability of the plant (after all, it’s easier 

to repay debt if utilities are meeting current obligations more cheaply), potential stranded asset 

value of at-risk coal plants reaches into the tens of billions.  A recent series of America’s Power 

Plan policy briefs10 highlight different financial tools policymakers can consider to retire 

uneconomic coal-fired generation while balancing consumer, community, and investor concerns.  

                                                      
8 VCE’s algorithm selected wind or solar resources immediately adjacent to the coal plant, and moved outward until 
renewable energy replaced the output of the coal plant. 35 miles is the furthest away from the coal plant the model 
had to go to fill this need. The algorithm is described in Appendix C. 
9 “Colorado Energy Plan,” Xcel Energy, 
https://www.xcelenergy.com/company/rates_and_regulations/resource_plans/colorado_energy_plan. 
10 “Managing The Utility Financial Transition From Coal to Clean,” Energy Innovation: Policy and Technology LLC, 
https://energyinnovation.org/publication/managing-the-utility-financial-transition-from-coal-to-clean-2/.  

https://energyinnovation.org/wp-content/uploads/2019/03/Coal-Cost-Crossover-National-Dataset.xlsx
https://energyinnovation.org/wp-content/uploads/2019/04/Existing-Coal_vs_New-Wind-Solar_April-2019.xlsx
https://www.xcelenergy.com/company/rates_and_regulations/resource_plans/colorado_energy_plan
https://energyinnovation.org/publication/managing-the-utility-financial-transition-from-coal-to-clean-2/
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CORE DATASETS 

This report uses two data sources to construct its unique plant-by-plant analysis:  LCOE and 

MCOE.  Current and future LCOE data for wind and solar projects are on a fine resolution scale, 

allowing policymakers to directly see wind and solar opportunities in their geography.  VCE has 

created several high-resolution wind and solar LCOE maps across the U.S. using detailed weather 

models for power production at a nine-km2 geographic resolution, multiple wind hub-heights, 

and a five-minute temporal resolution.  Modeling details are provided in Appendices A & B. 

The wind and solar LCOE maps in this report include 2018 LCOE estimates by VCE for each 

technology, including current tax benefits and regional cost modifiers.  They clearly show 

attractive pricing for both technologies across the U.S. as low as $15 per MWh for wind and 

$28/MWh for solar in 2018.  Note that wind LCOEs have more geographic variation and hence 

the color scales differ from the solar color scales.   

We also include the VCE 2025 estimates of wind and solar LCOE using the low-case NREL Annual 

Technology Baseline (ATB)11 cost projections.  In 2025, despite the loss of federal tax 

incentives,12 future cost declines mean that future pricing continues to be attractive.  High-

resolution images of the wind and solar LCOE maps are available for download, allowing users to 

zoom in at a fine-scale.   

VCE also provided plant-by-plant estimates of the current MCOE for U.S. coal plants. This dataset 

was created for existing U.S. coal-fired power plants by combining publicly available information.  

Data was collected from FERC Form 1, EIA Form 860, and EIA Form 923 for the calendar year 

2017. The extracted information includes amount of fuel burned, average power plant heat rate, 

emission factors, capital investments, pollution controls, fixed operations and maintenance 

(O&M) costs, and variable O&M costs.   

The MCOE combines fuel and variable costs based on the operation and maintenance (O&M) of 

power plants, as well as the fixed O&M and the ongoing capital spending for pollution controls 

and other upgrades to the power plant. Those later fixed costs were converted to $/MWh, using 

plant-specific capacity factors.  For plants in regular use (capacity factors over 33%) this analysis 

shows a wide range of MCOEs, from $25 / MWh to $104 / MWh.  For smaller capacity factors, 

the MCOE values quickly climb even higher, as O&M expenses are spread over fewer and fewer 

hours, and efficiency plummets. High-resolution images of the maps showing coal operational 

costs compared new renewables.  

                                                      
11 “Annual Technology Baseline,” National Renewable Energy Laboratory, August 2018, https://atb.nrel.gov/. These 
estimates are justifiable due to cost declines today that indicate we’re already reaching the NREL ATB mid-case 
numbers. 2018-vintage contracts for wind and solar are available from Level 10. 
12 “Renewable Electricity Production Tax Credit (PTC),” United States Department of Energy, 
https://www.energy.gov/savings/renewable-electricity-production-tax-credit-ptc  

https://www.dropbox.com/sh/owqbtp58b7jr1vr/AAC9vSiWR_2Pa6sq8ZLGu32ea?dl=0
https://www.dropbox.com/sh/msb4kcipqmjymsu/AACLLnh8sOO8iyisF6_H_bkaa?dl=0
https://atb.nrel.gov/
https://www.energy.gov/savings/renewable-electricity-production-tax-credit-ptc
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Map of the levelized cost of energy for U.S. solar photovoltaic projects in 2018 using VCE dataset 

 

Map of the levelized cost of energy for U.S. wind projects in 2018 using VCE dataset 
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Map of the levelized cost of energy for U.S. solar photovoltaic projects in 2025 using VCE dataset 

 

Map of the levelized cost of energy for U.S. wind projects in 2025 using VCE dataset 
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The coal plant dataset provides additional information that can be used for further analysis. First, 

it includes location and installed capacity of each coal-fired power plant. Second, it includes the 

heat rates, capacity factors, ages, and plant names for ease of reference on the MCOE 

construction.  

COAL TO RENEWABLES COST CROSSOVER 

In order to compare the costs of building new renewables with the ongoing costs of running coal 

plants, this report combines the two datasets above to present simplified cost crossover math.  

Examining each coal-fired power plant in the dataset, VCE determined how nearby wind and 

solar could be used to replace that coal plant.  To determine the risk profile of the coal 

generation to wind and solar replacement, we compared the MCOE of the coal-fired power plant 

with the LCOE of the total wind or solar output required to replace all the coal megawatt hours 

(VCE looked only at either all wind or all solar replacement). 

The VCE algorithm logic is explained in Appendix C.  In short, it replaces all the MWhs generated 

from each coal plant annually using local wind or local solar in a search pattern for sites that are 

available for deployment13 steadily increasing in distance.  The maximum distance the algorithm 

required to identify replacement wind or solar resources for any given power plant was 35 miles, 

with a resulting average of 16 miles; these are very local replacements on the scale of the 

national maps being presented with this report.  Sites deemed unsuitable for development by 

the VCE site screening algorithm were excluded from the assessment.  The algorithm did not 

look further afield for cheaper combinations of distant resources and transmission.  Its output is 

strictly the LCOE of local wind or solar required to replace each coal plant, transformed into a 

percentage difference between the MCOE of the existing coal generation and new local wind 

and solar. 

Any plant with a negative percentage difference for solar or wind replacement was deemed at 

risk, and “substantially at risk” if the differential was less than -25% with local resources.  

The quantity of energy replacement is only compared in terms of annual generation and doesn’t 

capture the time-based value of energy and grid services from a dispatchable (if not always so 

flexible) coal plant.  Further useful analysis could compare a coal plant with a “virtual power 

plant,” combining wind, solar, storage and demand-side resources to more closely mimic or 

improve on the dispatch of the coal plant and reliability services.   

But, as mentioned above, while the VCE analysis includes the cost of interconnecting new local 

wind and solar, the search algorithm does not look further afield for even cheaper resources 

once it has replaced the required MWhs.  In Colorado, for example, no coal plant is at risk from 

local wind in this analysis, but we know that wind in the eastern part of the state easily competes 

                                                      
13 Suitability is determined using the VCE site screening algorithms that remove all protected areas, urban areas, 
critical flora and fauna, as well as topographical constraints on construction. Further, the algorithm provides buffer 
space for habitation and other land uses around the potential resource candidate technology. 
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with coal and is accessible via in-state transmission.  In light of these factors, cost crossover 

would likely be more common if transmission expansion were taken into account. 

FINDINGS – COAL AT RISK NUMBERS 

Using the cost crossover algorithm, VCE determined that in 2018 more than 49 GW of coal were 

substantially at risk from local wind and more than 69 GW are substantially at risk from local 

solar, meaning they could be replaced with local renewable energy resources at least 25 percent 

cheaper than the running costs of the coal.  

By 2025, local wind and solar could respectively replace roughly 76 GW and 111 GW of coal 

generation at 25 percent lower costs than running the coal-fired power plants.14  Combining the 

wind and solar datasets, VCE finds that 211 GW of coal capacity, or 74 percent, is at risk with 94 

GW substantially at risk from 2018 possible local wind and solar.  Assuming the NREL lower cost 

technology baseline case for 2025, substantially at-risk coal increases to 140 GW (with sunset tax 

support), or almost half of the U.S. fleet.    

MW RE Cost  
Wind 

(2018) 

Solar 

(2018) 

Wind 

(2025) 

Solar 

(2025) 

Combined 

(2018) 

Combined 

(2025) 

Coal 

substantially 

at risk 

>25% less 

than coal 
49,165 69,117 75,778 111,077 93,812 140,073 

Coal at risk 
0-25% less 

than coal 
118,085 178,871 167,201 229,001 210,842 246,306 

Coal 

potentially 

at risk 

0-25% more 

than coal 
168,563 107,777 119,447 57,647 75,806 40,342 

Coal 

deemed 

safe 

>25% more 

than coal 
101,792 49,620 46,289 15,706 21,608 7,866 

 

We also report the substantially at-risk coal by state, as this is often the most relevant 

jurisdiction for the future of any at-risk coal plant15: 

 

                                                      
14 Using NREL ATB low. 
15 There are two states where the MW of coal in the substantially at-risk categories falls from 2018 to 2025. This is 
because those plants are right on the cusp (-25%) of that category and a slight increase in local costs, due to PTC 
sunset causes them to move the less risky category. 
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Note that many Midwestern states see a significant increase in substantially at-risk coal by 2025, 

reflecting the continuing drop in price for local solar and the high marginal costs of these coal 

plants.  Solar costs have less geographic variation and are therefore projected to become locally 

accessible in more places than wind, but Midwestern states could also readily access rich wind 

resources to the west with more transmission.   

The sharpest patterns are regional.  Almost all coal plants in the PJM footprint are at risk to coal 

replacement on a straight energy value comparison by 2025.  Of course, coal plants in PJM 

garner a large fraction of their revenue from capacity markets that are unfriendly to solar16 (in 

part because they make no allowances for seasonal performance or time-of-day value).  This 

keeps them afloat, with a huge opportunity cost to customers.  Another strong regional trend is 

in the Southeast, where almost all coal plants are substantially at risk to replacement by local 

solar in 2025 (solar energy is often available there at half the cost of coal power using the NREL 

lowest-cost scenario).  The trend is so strong that it is hard to imagine Southeastern utilities not 

relying heavily on solar and complementary load shifting resources to replace the coal and save 

customers money.     

The overall conclusion is clear: Much of the U.S. coal fleet is simply becoming uneconomic and 

analysts, utilities, other stakeholders, regulators, and policymakers need to take a critical look at 

                                                      
16 Jacob Mays, David Morton, and Richard P. O’Neill, “Asymmetric Risk and Fuel Neutrality in Capacity Markets,” 

United States Association for Energy Economics Working Paper No. 19-385 (February 8, 2019), 

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3330932; Robbie Orvis and Eric Gimon, “The State of 

Wholesale Power Markets: What’s Wrong With Proposed Changes in Eastern RTOs?” Utility Dive, June 20, 2017, 

https://www.utilitydive.com/news/the-state-of-wholesale-power-markets-whats-wrong-with-proposed-changes-

in/445417/.  

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3330932
https://www.utilitydive.com/news/the-state-of-wholesale-power-markets-whats-wrong-with-proposed-changes-in/445417/
https://www.utilitydive.com/news/the-state-of-wholesale-power-markets-whats-wrong-with-proposed-changes-in/445417/
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each and every coal plant in their jurisdiction. 

In this analysis, wind and solar replace all coal-fired generation solely on an annual basis, but as 

previously stated, a limitation of this analysis is that replacing annual generation does not 

capture coal generation dispatch timing.  Despite its notorious inflexibility, coal is mostly 

dispatchable, while wind and solar are variable sources of energy whose output, even in 

aggregate, does not necessarily match demand.  But so-called “baseload” coal economics 

typically require high capacity factors, limiting their use as flexibility resources (high capacity 

factors require avoiding frequent ramping up and down) and creating a premium for what 

flexibility they offer, as consumers must pay the costs of running higher-cost energy sources 

year-round to access that flexibility.   

The wider the gap becomes between the marginal economics of coal versus wind and solar, the 

more coal plants will have to depend on their perceived capacity value to recover costs.  Their 

capacity factors may drop even more, widening the gap, and opening a window for dedicated 

resources like demand response, storage, and existing flexible resources to fill their niche. 

DISCUSSION 

This report suggests a sunset scenario for coal power.  Not all plants will retire immediately —a 

steady flow of exits is more likely, especially where capacity markets and monopoly utilities 

support uneconomic coal generation at the expense of new renewables — but all stakeholders 

must prepare for the looming economic reality. 

The first step for merchant owners, utilities, regulators, and other stakeholders is taking a hard 

look at coal retirement.  For regulated utility assets, integrated resource plans (IRP) and other 

long-term planning analytical efforts should always include coal retirement scenarios.  Indiana 

utility NIPSCO has shown how smart analysis can flip planning directions: Their most recent 

planning effort recommended replacing all their coal in the next decade with renewable energy, 

including wind and solar, along with battery storage17.  Consumer advocates elsewhere should 

be asking whether coal plants receiving state-regulated cost recovery but operating in 

transparent competitive regional energy markets18 should be allowed to run at loss to the 

detriment of consumers’ pocketbooks19. 

                                                      
17 Andrew Steele, “NIPSCO Plan Would Eliminate Coal-Fired Electricity Generation Within 10 Years,” The Times of 
Northwest Indiana, September 19, 2018, https://www.nwitimes.com/business/local/nipsco-plan-would-eliminate-
coal-fired-electricity-generation-within-years/article_269a1f6b-1a24-5180-976d-27a474d8ee47.html. 
18 United States Department of Energy, Principles for Increasing the Accessibility and Transparency of Power System 
Planning, January 2017, 
https://www.energy.gov/sites/prod/files/2017/01/f34/Principles%20for%20Increasing%20the%20Accessibility%20a
nd%20Transparency%20of%20Power%20System%20Planning.pdf.  
19 Joseph Daniel, “The Coal Bailout Nobody is Talking About,” Union of Concerned Scientists (blog), September 24, 
2018, https://blog.ucsusa.org/joseph-daniel/the-coal-bailout-nobody-is-talking-about. A virtual power plant (VPP) is 
a cloud-based distributed power plant that aggregates the capacities of heterogeneous distributed energy 

https://www.nwitimes.com/business/local/nipsco-plan-would-eliminate-coal-fired-electricity-generation-within-years/article_269a1f6b-1a24-5180-976d-27a474d8ee47.html
https://www.nwitimes.com/business/local/nipsco-plan-would-eliminate-coal-fired-electricity-generation-within-years/article_269a1f6b-1a24-5180-976d-27a474d8ee47.html
https://www.energy.gov/sites/prod/files/2017/01/f34/Principles%20for%20Increasing%20the%20Accessibility%20and%20Transparency%20of%20Power%20System%20Planning.pdf
https://www.energy.gov/sites/prod/files/2017/01/f34/Principles%20for%20Increasing%20the%20Accessibility%20and%20Transparency%20of%20Power%20System%20Planning.pdf
https://blog.ucsusa.org/joseph-daniel/the-coal-bailout-nobody-is-talking-about
https://en.wikipedia.org/wiki/Cloud_computing
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Consumer advocates faced with utility inertia, environmental advocates concerned about 

unpriced coal externalities, and advanced energy solutions providers eager to open 

opportunities can push back against reliability or dispatchability arguments by comparing the 

economics of any single coal plant with a combination of local (or distant but easily accessible) 

renewables with complementary demand-side and storage resources, or virtual power plants 

(VPP)20.  If a VPP drop-in replacement also proves more economic than an at-risk coal plant, it 

can provide an estimate of the minimum savings available from coal plant retirement.   

A more holistic approach leveraging other existing assets on the grid can prove to be even 

cheaper for integrating low-cost renewables.  For example, a VCE study21 showed how Colorado 

could replace all its aging coal plants with a mix of wind, solar, natural gas, and storage to save 

the state’s electric customers more than $250 million annually without affecting reliability.  This 

example is especially notable in the context of this report, because Colorado appears on the tail 

end of states with coal plants at risk from renewables within 35 miles.  

Because coal plants in the central and eastern part of Colorado are most economically replaced 

with cheap wind from the eastern part of the state, not with local resources (although solar does 

start becoming a local option by 2025), our cost crossover analysis does not flag many of these 

plants as at risk (see 2025 LCOE wind map).  In fact, this is true for most of the West, where high-

quality wind resources in the $15 – 25 / MWh range are often only accessible through large 

transmission projects.  Understanding the geographic dimensions of renewable costs – the 

opportunities visible in our maps – and proper modeling are therefore key to planning analysis 

and decision-making.   

For coal plants in a vertically integrated jurisdiction like Colorado, and in hybrid setups where 

coal plants participate in wholesale markets but long-term costs are covered by ratepayers (e.g. 

many states in Southwest Power Pool and Midcontinent Independent System Operator), it is also 

useful to look not just at the MCOE of a given coal plant, but also at the remaining balance of 

long-term costs.  Captive customers are on the hook for these costs. If an at-risk coal plant 

retires but is not paid off, significant incremental savings await ratepayers, especially if the 

remaining amortization balance can be refinanced at a lower cost than typical utility rates of 

return22.   

                                                      
resources (DERs) for the purposes of enhancing power generation, as well as trading or selling power on the 
electricity market. 
20 Mark Dyson, Alexander Engel, and Jamil Farbes, The Economics of Clean Energy Portfolios, Rocky Mountain 
Institute, 2018, https://rmi.org/wp-
content/uploads/2018/05/RMI_Economics_Of_Clean_Energy_Portfolios_2018.pdf.  
21 Vibrant Clean Energy, “New Study Finds That Replacing Aging Coal Plants With Wind and Solar Saves Colorado 
$2.5 Billion by 2040 While Sharply Slashing Emissions,” January 8, 2019, https://www.vibrantcleanenergy.com/wp-
content/uploads/2019/01/CEI-VCE_CO_CoalPlantRetireStudy(CRS).pdf.  
22 “Financial Transition,” America’s Power Plan, December 2018, https://americaspowerplan.com/power-
transformation-solutions/financial-transition/.  

https://rmi.org/wp-content/uploads/2018/05/RMI_Economics_Of_Clean_Energy_Portfolios_2018.pdf
https://rmi.org/wp-content/uploads/2018/05/RMI_Economics_Of_Clean_Energy_Portfolios_2018.pdf
https://www.vibrantcleanenergy.com/wp-content/uploads/2019/01/CEI-VCE_CO_CoalPlantRetireStudy(CRS).pdf
https://www.vibrantcleanenergy.com/wp-content/uploads/2019/01/CEI-VCE_CO_CoalPlantRetireStudy(CRS).pdf
https://americaspowerplan.com/power-transformation-solutions/financial-transition/
https://americaspowerplan.com/power-transformation-solutions/financial-transition/
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When evaluating coal replacement by other long-term contracts, Colorado offers another 

interesting example because of its competitive IRP process where potential suppliers bid against 

each other to meet future needs.  This kind of bidding transparently surfaced cost numbers that 

revealed some of the first signs that cost crossover was possible. 

In competitive markets run by Independent System Operators (ISOs), cost crossover analysis 

indicates where markets are likely out of balance with current economic realities.  Obviously, if 

plant owners are taking all the risk and wholesale prices remain below coal plant MCOE, coal 

plants will bow to economic pressure and retire.  For example, in 2018, Texas’ ERCOT system had 

at least five coal plants close or announce plans to close.23  In PJM’s most recent look at 

incorporating ambitious fractions of renewables24, the largest amounts of solar generation 

considered are nowhere near the hundreds of terawatt-hours of coal to solar replacement 

implied in this report’s analysis.  With proper planning and more technology-agnostic rules, 

tremendous value can be unlocked for customers served by ISOs and utilities. 

CONCLUSION   

Coal is a dirty and expensive way to generate electricity.  The National Academies estimated that 

in 2005, U.S. coal generation alone caused at least $62 billion in non-climate related damages.25  

Coal’s remaining rationale was that it was cheap if externalities weren’t included, but even that 

rationale is vanishing.  Our report shows that coal is increasingly uneconomic against new local 

wind and solar resources.   

The next refuge for those with an economic stake in coal generation is reliability, or claims that 

the grid cannot run reliably without it.  This report cannot directly address that contention, but 

more holistic studies like the VCE Colorado or Minnesota studies26 or the NREL27 renewable 

integration studies do undercut this point.   

                                                      
23 Miranda Green, “Texas Coal Plant Announces Plans to Shut Down,” The Hill, September 25, 2018, 
https://thehill.com/policy/energy-environment/408369-texas-based-coal-fired-plant-announces-retirement.  
24 “Renewable Integration Study Reports,” PJM Interconnection, https://www.pjm.com/committees-and-
groups/subcommittees/irs/pris.aspx.  
25 The National Academies, Hidden Costs of Energy, 2009, 
https://www.nap.edu/resource/12794/Hidden_Costs_Key_Findings_final.pdf.  
26 Vibrant Clean Energy, “New Study Finds That Replacing Aging Coal Plants With Wind and Solar Saves Colorado 
$2.5 Billion by 2040 While Sharply Slashing Emissions,” January 8, 2019, https://www.vibrantcleanenergy.com/wp-
content/uploads/2019/01/CEI-VCE_CO_CoalPlantRetireStudy(CRS).pdf; Vibrant Clean Energy, Minnesota’s Smarter 
Grid, July 31, 2018, https://www.mcknight.org/wp-content/uploads/Minnesotas-
SmarterGrid_FullReport_NewFormat.pdf. 
27 Joshua Novacheck, Greg Brinkman, and Gian Porro, Operational Analysis of the Eastern Interconnection at Very 
High Renewable Penetrations, National Renewable Energy Laboratory, September 2018, 
https://www.nrel.gov/docs/fy18osti/71465.pdf; “Renewable Electricity Futures Study,” National Renewable Energy 
Laboratory, https://www.nrel.gov/analysis/re-futures.html; “Interconnections Seam Study,” National Renewable 
Energy Laboratory, https://www.nrel.gov/analysis/seams.html; “Eastern Renewable Generation Integration Study,” 
National Renewable Energy Laboratory, https://www.nrel.gov/grid/ergis.html.  

https://thehill.com/policy/energy-environment/408369-texas-based-coal-fired-plant-announces-retirement
https://www.pjm.com/committees-and-groups/subcommittees/irs/pris.aspx
https://www.pjm.com/committees-and-groups/subcommittees/irs/pris.aspx
https://www.nap.edu/resource/12794/Hidden_Costs_Key_Findings_final.pdf
https://www.vibrantcleanenergy.com/wp-content/uploads/2019/01/CEI-VCE_CO_CoalPlantRetireStudy(CRS).pdf
https://www.vibrantcleanenergy.com/wp-content/uploads/2019/01/CEI-VCE_CO_CoalPlantRetireStudy(CRS).pdf
https://www.mcknight.org/wp-content/uploads/Minnesotas-SmarterGrid_FullReport_NewFormat.pdf
https://www.mcknight.org/wp-content/uploads/Minnesotas-SmarterGrid_FullReport_NewFormat.pdf
https://www.nrel.gov/docs/fy18osti/71465.pdf
https://www.nrel.gov/analysis/re-futures.html
https://www.nrel.gov/analysis/seams.html
https://www.nrel.gov/grid/ergis.html
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Other resources will be required to complement wind and solar and provide essential reliability 

services, but the increasingly attractive relative value proposition for the raw energy available 

from wind and solar versus more expensive coal generation can generate more and more money 

to directly address grid challenges.  Steep declines in costs for resources like battery storage will 

stretch that money even more. Furthermore, it is becoming clear that wind and solar can 

become an asset rather than a liability when it comes to essential reliability services due to their 

highly responsive power electronics.28   

Large majorities of Americans support increasing the use of solar and wind energy in their 

states29.  The data in this report provide an economic rationale for a coal phase-out in the next 

decade led by wind and solar, happening a lot quicker than most had imagined.  It’s time to get 

on with the coal-to-clean transition. 

  

                                                      
28 Energy and Environmental Economics, Inc., Investigating the Economic Value of Flexible Solar Power Plant 
Operation, October 2018, https://www.ethree.com/wp-content/uploads/2018/10/Investigating-the-Economic-
Value-of-Flexible-Solar-Power-Plant-Operation.pdf.  
29 “Findings From the Fall 2018 NSEE,” Gerald R. Ford School of Public Policy, http://closup.umich.edu/national-
surveys-on-energy-and-environment/nsee-2018-fall/renewables.php.  

https://www.ethree.com/wp-content/uploads/2018/10/Investigating-the-Economic-Value-of-Flexible-Solar-Power-Plant-Operation.pdf
https://www.ethree.com/wp-content/uploads/2018/10/Investigating-the-Economic-Value-of-Flexible-Solar-Power-Plant-Operation.pdf
http://closup.umich.edu/national-surveys-on-energy-and-environment/nsee-2018-fall/renewables.php
http://closup.umich.edu/national-surveys-on-energy-and-environment/nsee-2018-fall/renewables.php
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APPENDIX A 

SOLAR PV POWER DATASET 

To create a high resolution levelized cost of electricity (LCOE) dataset a power dataset is 

required. Vibrant Clean Energy, LLC (VCE) has created such a power dataset for solar PV across 

the United States. The power dataset is at a geographic resolution of three km and a temporal 

resolution of five minutes. The solar PV power dataset spans five calendar years. 

To construct the solar PV power dataset, VCE acquired the full three-dimensional (native) fields 

of the National Oceanic and Atmospheric Administration (NOAA) High Resolution Rapid Refresh 

(HRRR). VCE has continued to expand the only 3-D archive of the HRRR for both assimilation 

hours and forecast out to 36 hours. The numerical weather prediction (NWP) model data from 

NOAA is crucial because it includes 20 - 50,000 observations collected and quality controlled by 

the National Weather Service (NWS). The observations include ground-based measurements, 

satellites, aircraft, radar, balloon launches, and more. In addition, VCE acquired the GOES-East 

and GOES-West Satellite telemetry for the visible band, three Infrared bands, and the water 

vapor band. The temporal resolution of the satellite data is 15-minutes. The satellite dataset 

spans the same time period as the NOAA HRRR dataset. The satellite dataset has been collected 

because it is well understood that NWP are poorer at cloud resolving than satellites in terms of 

thickness and dispersion. Further, the dual satellite imagery facilitates stereographic projections 

of the clouds for computing the shading, reflection and absorption of solar irradiance in many 

grid cells. Finally, VCE collected the NOAA SURFRAD and SOLRAD high-precision ground-based 

measurements for solar irradiance. This will be used in the deep-learning AI algorithm contained 

in VCE’s Solar Irradiance Model (SIM). 

Not every variable in the HRRR dataset is used for the solar PV power estimates. For the 

proprietary algorithm created by VCE, the Solar Power Model (SPM), we extract: the wind speed 

at two meters, the incoming shortwave radiation, the incoming longwave radiation, the outgoing 

shortwave radiation, the outgoing longwave radiation, the clouds in the column above the 

ground resource sites, the hydrometeors in the column, the temperature, the clouds and 

hydrometeors in the beam direction, and the estimated aerosols. 

In addition to collecting data from the HRRR, GOES, SURFRAD, and SOLRAD, VCE must compute 

some critical variables that have a significant influence on solar irradiance: The Earth-Sun 

distance, the declination angle, the hour angle, the azimuth angle, the zenith angle for every 

single site across the United States. An important addition is the Equation of Time that can 

disrupt accuracy at five-minute resolution if not included. 

The HRRR dataset is at hourly resolution. It is at this stage that we convert the hourly data into 

five-minute data. We do this using the tendencies (derivatives) within the HRRR model as well as 

statistical methods to create a continuous function between hours. The five-minute resolution 

allows use of cloud scattering and other variables in the HRRR that can be useful to determining 

solar PV power at shorter-time periods than the hourly data. 
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The procedure to create the datasets is somewhat similar to that described in Clack, 201730. We 

recap the major points here for completeness.  

The first part of the procedure is to create the Direct Normal Irradiance (DNI), the Diffuse 

Horizontal Irradiance (DHI), and the Global Horizontal Irradiance (GHI). We require all 

components because the solar panels respond differently to the DNI and DHI; particularly with 

heating of the panels and the photoelectric effect. The SIM trains the learning algorithm (AI) with 

the ground-based observations from the SOLRAD and SURFRAD sites. These are considered the 

“truth” with their measurement errors incorporated. The GOES and NWP datasets are the 

components to be combined to produce the ground-based measurements. Of course, a small 

subset is held back from the training algorithm to validate the approach. The approach begins 

with a shallow-learning sequence (as in Clack, 2017); but then continues with deeper learning 

that recombines different variables in unconventional ways to increase the precision of the 

estimates. There are ~630,000 observations to train upon. The training is performed repeatedly 

with different data levels available. For example, one satellite only available; part of a satellite 

missing, all satellites missing, some hydrometeors missing, etc. It is important to note that the 

nearest one-minute average of the ground-based observation is used for the five-minute 

estimates. We combine errors of measurements and five-minute variance for the observations. 

This is a deliberate choice; the SIM is comparing a point to a grid cell average. We do not want to 

over-fit the learning. Note that the SURFRAD and SOLRAD sites span the U.S. and are in different 

urban/non-urban environments. 

The conclusion of the SIM is where the deep learning algorithm applies the computed 

coefficients to all sites across the U.S. for all five-minute time periods. The outputs are GHI, DNI, 

DHI, hour angle, azimuth angle, zenith angle, declination angle, clouds, aerosols, temperature, 

and wind speed at two meters. 

Once the SIM outputs are created, the procedure moves to the second stage, which is the SPM. 

The SPM include parameters for different solar PV types. The standard used is mono-crystalline. 

The SPM computes the power estimates based on the SIM outputs, the angle of the panels, the 

shading, the tracking assumed, and the terrain / elevation. The SIM outputs include temperature 

and wind speeds, that allows computation of the heating of the panels that influences the power 

production vastly. The Invert Loading Ratio (ILR) is assumed to be 1.2. The SPM has the ability to 

perform the computations with any level of ILR; but this would add too many degrees of 

freedom if it was not consistent across the U.S.  

The SPM computes the instantaneous CF for each three-km site for each five-minute time step. 

The power can be above 100 percent rated power because of temperature dependency, cloud 

brightening, Inverter loading, and snow cover. The SPM is limited to only allowing 130 percent of 

                                                      
30 Christopher T. M. Clack, “Modeling Solar Irradiance and Solar PV Power Output to Create a Resource Assessment 
Using Linear Multiple Multivariate Regression,” Journal of Applied Meteorology and Climatology, (January 2017): 
109-125, https://journals.ametsoc.org/doi/pdf/10.1175/JAMC-D-16-0175.1.  

https://journals.ametsoc.org/doi/pdf/10.1175/JAMC-D-16-0175.1
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the rated capacity. This is to avoid overloading the inverters. The rated power is defined by the 

solar panels installed. This is because for costs later, we use the cost for installing at 1.0 ILR, so 

we require consistent definitions. 

The solar PV power dataset is the final output of SPM. Currently, the dataset covers multiple tilts 

for fixed PV, one-axis tracking (North-South facing, tilted at latitude) and two-axis tracking. It 

does also include rooftop solar PV estimates, which is based on roof space, average tilt of roof, 

shading, and pitch of roof in each three-km grid cell. The one-axis tracking is the most widely 

adopted in the U.S., but the other versions allow comparison for production and optimal siting at 

a later date. For example, northern states would benefit from two-Axis tracking for higher solar 

production in the winter months, which would offset the additional cost of construction. 

However, the far south could use fixed axis tilted at an optimal angle and save on having tracker 

technologies. A short visualization of the solar PV dataset is available online.31 

COSTS AND INCENTIVES 

Once the solar PV power dataset is created, we can start to apply costs to the resource sites. In 

the previous section, we have only dealt with the physics of the solar irradiance and power; and 

not how economics alters the picture for site preference. To apply costs, we use the National 

Renewable Energy Laboratory (NREL) Annual Technology Baseline (ATB) 2018. The NREL ATB 

2018 provide costs for numerous years and technologies. We have chosen to use the 2018 costs 

along with the 2025 (low and mid) projection. The solar cost is referenced to the one-axis 

tracking for each site across the U.S. 

The economic life of the solar PV plant is estimated to be 25 years. The Weighted Average Cost 

of Capital is assumed to be 5.87 percent (real). The fixed and variable costs are also pulled from 

the NREL ATB 2018. 

The federal incentives of the Production Tax Credit (PTC) and Investment Tax Credit (ITC) are 

applied with their current sunset dates. Only the ITC is applied to the solar sites. 

The U.S. is extremely diverse in its costs for labor, materials and permitting. The algorithm used 

for the modeling includes a component that applies state-level multipliers to the cost of the solar 

PV construction. They are applied at the state-level because of data availability. The multipliers 

range from 87.5 percent to 105.0 percent. Further there is cost multipliers for the different 

technologies. For the one-axis tracker there is a 15 percent premium for building the tracker 

system compared with the fixed panels, with no tilt. 

TRANSMISSION CONSIDERATIONS 

The VCE WIS:dom optimization model includes detailed transmission datasets. The transmission 

datasets include the transmission lines, their voltage, the transmission substations and their 

capacities. For each three-km site from the solar PV power dataset, a geodesic is computed to 

                                                      
31 “Solar Power For Day 10 of 2014 – Coincident With Winds,” Christopher Clack, Youtube video (May 23, 2018), 
https://www.youtube.com/watch?v=d22m0KHy5Fs.  

https://www.youtube.com/watch?v=d22m0KHy5Fs
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the nearest substation. The cost of the solar resource site is increased by the cost to construct 

the transmission line to the nearest substation. Further, if the WIS:dom model determines the 

substation is close to capacity, the solar site will incur a cost to upgrade the transmission 

substation as well. This is relaxed for the 2025 versions, because the grid topology is likely to 

change by that date. 

LCOE MAPS AND DATA LINKS 

With the costs and power datasets completed, the final step is to produce the LCOE mapping. 

The power dataset is converted to capacity factors for each three-km resource site. The capacity 

factor is combined with the costs to produce the LCOE. Essentially, total costs (capital, fixed, 

transmission, multipliers) divided by potential generation (CF * Size * 8760). We allowed only 

one-axis tracking tilted at latitude and orientated North-South. 

VCE has created NetCDF files that include the LCOE data for 2018, 2025 Low, and 2025 Mid. 

Further, VCE has visualized the LCOE data in PDF. The images allow easy zoom capabilities into 

regions of the United States to be used by all. The data files allow more precise analysis using the 

LCOE mapping. 

The location of the data files is: 

https://www.vibrantcleanenergy.com/wp-content/uploads/2019/03/LCOE-

Mapping/SolarLCOE_Data.zip   

The locations of the images are: 

https://vibrantcleanenergy.com/wp-content/uploads/2019/03/LCOE-

Mapping/SolarPVLCOEMap_2018_cobrand_samescale.pdf  

https://vibrantcleanenergy.com/wp-content/uploads/2019/03/LCOE-

Mapping/SolarPVLCOEMap_2025L_cobrand_samescale.pdf 

https://vibrantcleanenergy.com/wp-content/uploads/2019/03/LCOE-

Mapping/SolarPVLCOEMap_2025M_cobrand_samescale.pdf 

 

 

 

 

 

 

 

 

 

https://www.vibrantcleanenergy.com/wp-content/uploads/2019/03/LCOE-Mapping/SolarLCOE_Data.zip
https://www.vibrantcleanenergy.com/wp-content/uploads/2019/03/LCOE-Mapping/SolarLCOE_Data.zip
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APPENDIX B 

WIND POWER DATASET 

To create a high resolution levelized cost of electricity (LCOE) dataset a power dataset is 

required. Vibrant Clean Energy, LLC has created such a power dataset for wind across the United 

States. The power dataset is at a geographic resolution of three km and a temporal resolution of 

five minutes. The wind power dataset spans five calendar years. 

To construct the wind power dataset, VCE acquired the full three-dimensional (native) fields of 

the National Oceanic and Atmospheric Administration (NOAA) High Resolution Rapid Refresh 

(HRRR). VCE has continued to expand the only 3-D archive of the HRRR for both assimilation 

hours and forecast out to 36 hours. The numerical weather prediction (NWP) model data from 

NOAA is crucial because it includes 20 - 50,000 observations collected and quality controlled by 

the National Weather Service (NWS). The observations include ground-based measurements, 

satellites, aircraft, radar, balloon launches, and more. 

Not every variable in the HRRR dataset are used for the wind power estimates. For the 

proprietary algorithm created by VCE, the Wind Power Model (WPM), we extract: he wind 

speeds from 20 m to 240 m above ground level in 10 meter increments, the wind direction at 

each height, the air density at each height, turbulent kinetic energy at each height, temperature 

at each height, hydrometeors at each height, and the clouds at each height. The HRRR model is 

in hybrid-sigma coordinates and these are interpolated to height above ground level using cubic 

spline interpolation. 

The HRRR dataset is at hourly resolution. It is at this stage that we convert the hourly data into 

five-minute data. We do this using the tendencies (derivatives) within the HRRR model as well as 

statistical methods to create a continuous function between hours. The five-minute resolution 

allows use of wind gusts and other variables in the HRRR that can be useful to determining wind 

power at shorter-time periods than the hourly data. 

The procedure to create the datasets is somewhat similar to that described in Clack et al., 201632 

and Choukulkar et al., 201633. We recap the major points here for completeness.  

The first part to convert weather variables to power estimates is to create the Rotor Equivalent 

Wind Speed (REWS). The REWS is a scalar value that estimate the average wind speed across the 

entire rotor swept area. In Clack et al., 2016 the methods were expanded to include NWP 

models and the full power equation; which accounts for the discretization of the wind speed and 

derivatives for NWP. Further, in Choukulkar et al., 2016, the method was further expanded to 

                                                      
32 Christopher T. M. Clack, et al., “Demonstrating The Effect of Vertical and Directional Shear for Resource Mapping 
of Wind Power,” Wind Energy 19, (November 2015): 1687-1697, https://www.vibrantcleanenergy.com/wp-
content/uploads/2016/11/Demonstrating_the_effect_of_vertical_and.pdf.  
33 Aditya Choukulkar, et al., “A New Formulation for Rotor Equivalent Wind Speed for Wind Resource Assessment 
and Wind Power Forecasting,” Wind Energy 19, (September 2015): 1439-1452, 
https://www.vibrantcleanenergy.com/wp-content/uploads/2016/11/Choukulkar_et_al-2016-Wind_Energy.pdf 

https://www.vibrantcleanenergy.com/wp-content/uploads/2016/11/Demonstrating_the_effect_of_vertical_and.pdf
https://www.vibrantcleanenergy.com/wp-content/uploads/2016/11/Demonstrating_the_effect_of_vertical_and.pdf
https://www.vibrantcleanenergy.com/wp-content/uploads/2016/11/Choukulkar_et_al-2016-Wind_Energy.pdf
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include the turbulent kinetic energy influence on the power equations. The REWS formulation 

can be found in those peer-reviewed papers. The REWS also takes into account the sheer and 

veer across the rotor swept area. A similar procedure is required for the temperature, clouds, 

and air density. Two video visualizations of the wind data set can be found online34,35. 

Once the REWS and other variables are created for the wind power dataset, the power estimates 

must be constructed. This is done using the wind power equations from Clack et al., 2016 and 

Choukulkar et al., 2016. The WPM uses a combination of wind turbines from each wind resource 

class to create a generic wind turbine for each. The generic wind turbine has a coefficient of 

power curve that is a function (rather than a data table). The coefficient of power (or CP) is the 

efficiency of the wind turbine to extract power from the wind. It is used within the power 

equation. A more common tool is the power curve; however, this is more limited because it does 

not allow changes in air density, and is less sensitive to the cube of the wind speed (when using 

the REWS formulation). This is particularly important when considering the full power equation 

and turbulent kinetic energy. 

Once the WPM has completed there is wind power for the optimal turbine class for each three-

km across the United states for each five-minute interval for a five-year period. A visualization of 

the wind power (at 80m AGL) is available online.36 The current iteration of the wind power 

dataset has power for 80 meters, 100 meters, 120 meters, 140 meters, and 160 meters. It 

includes terrestrial and offshore wind resources. 

COSTS AND INCENTIVES 

Once the wind power dataset is created, we can start to apply costs to the resource sites. In the 

previous section, we have only dealt with the physics of the wind; and not how economics alters 

the picture for site preference. To apply costs, we use the National Renewable Energy 

Laboratory (NREL) Annual Technology Baseline (ATB) 2018. The NREL ATB 2018 provide costs for 

numerous years and technologies. We have chosen to use the 2018 costs along with the 2025 

(low and mid) projection. The wind cost is referenced to the optimal type for each site across the 

United States – including for offshore wind. 

The economic life of the wind turbines is estimated to be 30 years for terrestrial and 25 years for 

offshore. The Weighted Average Cost of Capital is assumed to be 5.87 percent (real). The fixed 

and variable costs are also pulled from the NREL ATB 2018. 

The federal incentives of the Production Tax Credit (PTC) and Investment Tax Credit (ITC) are 

applied with their current sunset dates. The PTC is applied to the terrestrial wind, while the ITC is 

                                                      
34 “10m Winds For Day 10 of 2014,” Christopher Clack, Youtube Video (May 23, 2018), 
https://www.youtube.com/watch?v=HU_m56X0FCM.  
35 “Hurricane Arthur in 2014 – 10m Wind Speeds,” Christopher Clack, Youtube video (May 8, 2018), 
https://www.youtube.com/watch?v=VeTGnzg4ngs.  
36 “Wind Power Across United States (4 days),” Christopher Clack, Youtube video (November 29, 2018), 
https://www.youtube.com/watch?v=K5kqch2QNzU.  

https://www.youtube.com/watch?v=HU_m56X0FCM
https://www.youtube.com/watch?v=VeTGnzg4ngs
https://www.youtube.com/watch?v=K5kqch2QNzU
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applied to the offshore wind sites. The algorithm used for the modeling takes into account that 

the PTC is only applied for 10 years after construction. 

The U.S. is extremely diverse in its costs for labor, materials and permitting. The algorithm used 

for the modeling includes a component that applies state-level multipliers to the cost of the wind 

construction. They are applied at the state-level because of data availability. The multipliers 

range from 97.5 percent to 112.5 percent.  

TRANSMISSION CONSIDERATIONS 

The VCE WIS:dom optimization model includes detailed transmission datasets. The transmission 

datasets include the transmission lines, their voltage, the transmission substations and their 

capacities. For each three-km site from the wind power dataset, a geodesic is computed to the 

nearest substation. The cost of the wind resource site is increased by the cost to construct the 

transmission line to the nearest substation. Further, if the WIS:dom model determines the 

substation is close to capacity, the wind site will incur a cost to upgrade the transmission 

substation as well. This is relaxed for the 2025 versions, because the grid topology is likely to 

change by that date. 

LCOE MAPS AND DATA LINKS 

With the costs and power datasets completed, the final step is to produce the LCOE mapping. 

The power dataset is converted to capacity factors for each three-km resource site. The capacity 

factor is combined with the costs to produce the LCOE. Essentially, total costs (capital, fixed, 

transmission, multipliers) divided by potential generation (CF * Size * 8760). We allowed up to 

100 meter AGL for 2018 and up to 120 meter for 2025. The algorithm selects the optimal height 

for the hub based on the reduction in the LCOE. It will increase the hub height from 80 meters to 

100 meters if it reduces the LCOE by more than $7.50/MWh and from 100 meters to 120 meters 

if it reduces the LCOE by more than $12.50/MWh. Essentially, if it chooses a 120 meter hub 

height, the cost of wind power is estimated to be $20/MWh cheaper than at 80 meters.  

VCE has created NetCDF files that include the LCOE data along with the optimal hub heights for 

2018, 2025 Low, and 2025 Mid. Further, VCE has visualized the LCOE data in PDF. The images 

allow easy zoom capabilities into regions of the United States to be used by all. The data files 

allow more precise analysis using the LCOE mapping. 

The location of the data files is: 

https://www.vibrantcleanenergy.com/wp-content/uploads/2019/03/LCOE-

Mapping/WindLCOE_Data.zip 

The locations of the images are: 

https://vibrantcleanenergy.com/wp-content/uploads/2019/03/LCOE-

Mapping/WindLCOEMap_2018_cobrand.pdf 

https://vibrantcleanenergy.com/wp-content/uploads/2019/03/LCOE-

Mapping/WindLCOEMap_2025L_cobrand.pdf 

https://www.vibrantcleanenergy.com/wp-content/uploads/2019/03/LCOE-Mapping/WindLCOE_Data.zip
https://www.vibrantcleanenergy.com/wp-content/uploads/2019/03/LCOE-Mapping/WindLCOE_Data.zip
https://vibrantcleanenergy.com/wp-content/uploads/2019/03/LCOE-Mapping/WindLCOEMap_2018_cobrand.pdf
https://vibrantcleanenergy.com/wp-content/uploads/2019/03/LCOE-Mapping/WindLCOEMap_2018_cobrand.pdf
https://vibrantcleanenergy.com/wp-content/uploads/2019/03/LCOE-Mapping/WindLCOEMap_2025L_cobrand.pdf
https://vibrantcleanenergy.com/wp-content/uploads/2019/03/LCOE-Mapping/WindLCOEMap_2025L_cobrand.pdf
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https://vibrantcleanenergy.com/wp-content/uploads/2019/03/LCOE-

Mapping/WindLCOEMap_2025M_cobrand.pdf 

  

https://vibrantcleanenergy.com/wp-content/uploads/2019/03/LCOE-Mapping/WindLCOEMap_2025M_cobrand.pdf
https://vibrantcleanenergy.com/wp-content/uploads/2019/03/LCOE-Mapping/WindLCOEMap_2025M_cobrand.pdf
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APPENDIX C 

COAL-FIRED POWER PLANT DATASET 

A marginal cost of electricity (MCOE) dataset can be created for the existing coal-fired power 

plants across the United States by combining publicly available information. The data collected 

from FERC Form 137, EIA Form 86038 and EIA Form 92339 for the calendar year 2017. The 

information extracted includes the amount of fuel burned, the average heat rate of the power 

plants, the emission factors, the capital investments, the pollution controls, the fixed operations 

and maintenance costs, and the variable operations and maintenance costs. 

Due to the scale of the coal dataset as well as the frequency of update for public information, 

inevitably there are some inconsistencies that appear in the analysis when referencing other 

datasets.  VCE has done its best to avoid such inconsistencies in the dataset, but some will likely 

remain.  The highest occurrence of inconsistencies will be due to: retired plants after 2017, 

repowering of coal plants with natural gas, naming conventions between datasets, and 

nameplate capacity numbers. 

The coal fuel cost for the construction of the MCOE dataset is taken from the National 

Renewable Energy Laboratory (NREL) Annual Technology Baseline (ATB) 2018. The national 

average for the 2018 calendar year is used. The fuel data collected from publicly available 

sources for 2017 was used to adjust the national coal price to the individual power plants. If 

there are multiple units at a coal-fired power plant, the data was combined into a single value for 

the entire plant. The coal-fired power plant fuel costs are multiplied by the annual average heat 

rates from the publicly available data. This results in a fuel cost for each power plant in $ / MWh.  

In addition to fuel costs, there are variable costs based on the operations and maintenance 

(O&M) of the power plant. The variable O&M was extracted from the NREL ATB 2018 and 

applied regionally. The values were correlated to the publicly available data. The variable O&M 

was constructed in $ / MWh.  

The final costs included in the MCOE are the fixed O&M costs and the ongoing capital spending 

for pollution controls and other upgrades to the power plant. These costs are applied to the coal-

fired power plants based on estimates constructed from the publicly available data. To convert 

these fixed costs to $ / MWh, the capacity factors for each of the power plants were utilized. 

The final MCOE dataset is in $ / MWh and is the addition of the fuel costs, the variable O&M 

costs and the fixed costs. The combined MCOE costs are dependent on the capacity factors. The 

MCOE dataset was constructed to compare the cost building new wind and solar to replace the 

                                                      
37 “Form 1 – Electric Utility Annual Report,” Federal Energy Regulatory Commission, https://www.ferc.gov/docs-
filing/forms/form-1/data.asp.  
38 “Form EIA-860 Detailed Data With Previous Form Data,” United States Energy Information Administration,  
https://www.eia.gov/electricity/data/eia860/.  
39 “Form EIA-923 Detailed Data With Previous Form Data,” United States Energy Information Administration,  
https://www.eia.gov/electricity/data/eia923/.  

https://www.ferc.gov/docs-filing/forms/form-1/data.asp
https://www.ferc.gov/docs-filing/forms/form-1/data.asp
https://www.eia.gov/electricity/data/eia860/
https://www.eia.gov/electricity/data/eia923/
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generation from each of the coal-fired power plants. Since the MCOE is sensitive to the capacity 

factor of the coal-fired power plant, it should be noted that adding new wind and solar to 

replace the coal generation would lower the capacity factor, thereby increasing the MCOE. 

The coal MCOE dataset comes with additional information that can be used for further analysis. 

First, the location and installed capacity of each coal-fired power plant is included. Second, the 

heat rates, capacity factors, age, and plant names are also included for ease of reference for the 

construction of the MCOE. Finally, the construction costs were estimated to compute the 

remaining debt for each coal-fired power plant. These debt costs were created using the publicly 

available data, the age of the power plants and the cumulative generation and revenue for that 

power plant. The debt costs were included in the LCOE, but not the MCOE. 

COAL REPLACEMENT ALGORITHM 

Once the coal-fired power plant dataset is created, it can be used to determine the ability for 

wind and solar to replace those coal plants. The LCOE for wind and solar were created 

previously. The LCOE calculation includes the transmission costs for interconnection, the 

resource potential and the localized costs for construction. The LCOE values were computed for 

2018 and 2025. 

The replacement of the coal generation with wind and solar is determined by comparing the 

MCOE of the coal-fired power plant with the LCOE of the total wind or solar required to replace 

all the coal megawatt hours. 

The algorithm for replacing the coal generation has the following basic structure: 

1. Select the coal-fired power plant to replace; 

2. Find the closest wind or solar resource site; 

3. Determine the generation from the wind or solar site and reduce the coal generation 

required to be replaced; 

4. Save the installed capacity of wind or solar along with the LCOE; 

5. Find the next closest wind or solar resource site; 

6. Repeat steps 3–5 until the coal generation to replace becomes zero; 

7. Compute the LCOE for the replacement wind or solar generation; 

8. Repeat steps 1–7 until all the coal-fired power plants are replaced.  

The algorithm continues until the entire generation for each coal-fired power plant is replaced 

with wind or solar. The output from the algorithm is the LCOE of the wind or solar required to 

replace the coal generation. That data is transformed into a percentage difference between the 

MCOE of the existing coal generation and the new wind and solar. 

The algorithm could be expanded in the future to include the addition of storage and a limit to 

the amount of installed capacity allowed to replace the coal-fired power plants. 

 


